訂閱電子報∣ 友善列印字體大小 文章分享-Facebook 文章分享-Plurk 文章分享-Twitter
清大突破全球首例自旋流解密MRAM關鍵瓶頸
獲取產業訊息零時差!立即訂閱電電公會電子報。

由國立清華大學賴志煌教授與林秀豪教授所帶領的研究團隊,在科技部長期的支持下,研究MRAM的特性、製程與操控,獨步全球,成功以自旋流操控鐵磁-反鐵磁奈米膜層的磁性翻轉,研究成果刊登於材料領域頂尖期刊《自然材料》(Nature Materials)。

清華大學材料科學工程學系賴志煌教授(左)、清華大學物理學系林秀豪教授(右)
清華大學材料科學工程學系賴志煌教授(左)、清華大學物理學系林秀豪教授(右)

MRAM是極被看好的後摩爾定律世代的記憶體。其結構有如三明治,上層是自由翻轉的鐵磁層,可快速處理資料,底層則是釘鎖住的鐵磁層,可用作儲存資料,兩層中則有氧化層隔開。當此二鐵磁層的磁化方向相同,是低電阻態,代表「1」 ;此二鐵磁層的磁化方向相反,是高電阻態,代表「0」。有別於目前的主流記憶體(SRAM 與 DRAM),MRAM兼具處理與儲存資訊的功能,且斷電時資訊不會流失,電源開啟可即時運作,耗能低、讀寫速度快。

其中一個技術關鍵,就是如何操控釘鎖住的鐵磁層。若想要將鐵磁層的磁矩方向釘鎖住,只需「黏」上一層反鐵磁層即可,製成的鐵磁-反鐵磁膜層即可應用在磁記憶體上。此現象稱為「交換偏壓」,雖發現至今已超過60年,其應用性極廣,但背後的物理機制未明。而且交換偏壓的操控性極為有限。必須將元件升溫,然後於外加磁場下降溫,才能改變鐵磁層磁矩的釘鎖方向。

無論是外加磁場或是升降溫度,都與現有電子元件的操作格格不入。世界各研究團隊莫不希望突破此困境,尋求嶄新的操控技術。其中一個突破點,就是善用自旋流。電子具有電荷,也具有自旋:當電荷流動時,即會產生熟悉的電流,若有辦法驅動自旋流動,即可產生自旋流。

賴教授與林教授的團隊利用自旋流通過鐵磁-反鐵磁膜層,率先展示操控元件「交換偏壓」方向與大小的里程碑。此技術可與現有電子元件的操控與製程無縫接軌,是MRAM的大突破,為自旋電子學的發展帶來嶄新視野。

利用自旋流操控交換偏置乃全球首見,賴教授表示當初投稿時引發諸多質疑,審稿委員懷疑是元件溫度升高所致,與自旋流無關。由於團隊橫跨材料與物理領域,兼具實驗與理論的專業能力,在面對高難度的質疑與挑戰時,能夠跳脫框架思考,以極高的效率與執行力,清楚精確地回應相關的質疑與挑戰。

目前研究團隊將此突破性的發現,應用到其它結構的奈米膜層,陸續發現更多具影響力的結果,除了學術的貢獻外,經由科技部半導體射月計畫的連結,將對於國內記憶體產業發展有決定性的影響力。

這項技術在學理上的存取速度接近 SRAM,具快閃記憶體的非揮發性特性,平均能耗遠低於 DRAM,應用於嵌入式記憶體(Embedded Memory)極具潛力,隨著人工智慧、物聯網裝置與更多的資料收集與感測需求,MRAM的市場也將迅速成長。

訂閱電子報 友善列印 字體大小:
獲取產業訊息零時差!立即訂閱電電公會電子報。